

# PDEs in Mixed Quantum-Classical Dynamics and the *Koopman* Method

Paul Bergold\*

*Seminar at École Polytechnique Fédérale de Lausanne,  
Lausanne, 30 October 2025*

**Joint** work with *W. Bauer* (Surrey), *F. Gay-Balmaz* (NTU Singapore),  
*G. Manfredi* (CNRS Strasbourg), and *C. Tronci* (Surrey)

\*Faculty of Technical Physics and Applied Mathematics, Politechnika Gdańsk, Poland

# Motivation for mixed quantum-classical (MQC) models

## Some applications

|             | Classical Subsystem | Quantum Subsystem |
|-------------|---------------------|-------------------|
| Foundations | measuring device    | measured system   |
| Cosmology   | gravity             | matter            |
| Chemistry   | nuclei              | electrons         |

Overcome the **curse of dimensionality** (at least to some extent) in simulations of many-body quantum systems, e.g. in **molecular dynamics**.

## Classical states – pure vs mixed

- **Classical pure states** are vectors in phase space (point particles)

Hamilton's equations: 
$$\dot{q} = \partial_p H, \dot{p} = -\partial_q H$$

$H: T^*Q \rightarrow \mathbb{R}$  is a phase-space function (Hamiltonian)

- **Classical mixed states** are positive densities  $f > 0$  with  $\int f(q, p) dq dp = 1$

Liouville equation: 
$$\partial_t f = \{H, f\}$$

Note that  $\{g, h\} = \partial_q g \partial_p h - \partial_p g \partial_q h$  denotes the canonical Poisson bracket.

# Quantum states – pure vs mixed

- **Quantum pure states** are normalized wave functions in  $L^2$

Schrödinger equation (TDSE): 
$$i\hbar\partial_t\psi = \hat{H}\psi$$

$\hat{H}: L^2 \rightarrow L^2$  is a self-adjoint operator, usually obtained by *quantization*, i.e.,

$$H(q, p) \rightarrow \hat{H}(\hat{q}, \hat{p}), \quad \hat{q}\psi = q\psi, \hat{p}\psi = -i\hbar\nabla\psi, \quad [\hat{q}, \hat{p}] = \hat{q}\hat{p} - \hat{p}\hat{q} = i\hbar$$

→ **Unitary evolution**:  $\psi(t) = U(t)\psi_0 = e^{-i\hat{H}t/\hbar}\psi_0$

- **Quantum mixed states** are positive-semidefinite operators  $\hat{\rho}$  with  $\text{Tr}(\hat{\rho}) = 1$

von Neumann equation: 
$$i\hbar\partial_t\hat{\rho} = [\hat{H}, \hat{\rho}]$$

# Notational setup for the hybrid model

- Hamiltonian operator  $\hat{H} = \hat{H}(z)$ : an operator-valued function on phase space  
(e.g.  $\hat{H}(z) = \hat{H}(q, p) = \frac{1}{2} \left( \frac{p^2}{m} + m\omega^2 q^2 \right) \hat{\sigma}_0 + \gamma q \hat{\sigma}_z$ ,  $m, \omega, \gamma > 0$ )
- Hybrid density  $\hat{P} = \hat{P}(z)$ : (sufficiently smooth) distribution taking values in the space  $\text{Her}(\mathcal{H})$  of Hermitian operators on the quantum Hilbert space  $\mathcal{H}$
- The **classical Liouville density** and **quantum density matrix** are recovered via

$$f = \text{Tr } \hat{P} \quad \text{and} \quad \hat{\rho} = \int_{T^*Q} \hat{P} \, d\mathbf{q} \, d\mathbf{p}$$

Think of  $\hat{P}(z) = f(z) \hat{\rho}(z) = f(z) \psi(\bullet; z) \psi(\bullet; z)^\dagger$ .

**Aim:** Propose MQC models that satisfy the following **consistency criteria**:

- 1) The classical subsystem is described by a **positive** probability density
- 2) The quantum subsystem is described by a **positive-semidefinite** density operator
- 3) In the absence of a coupling potential, the mixed dynamics reduces to **uncoupled quantum and classical flows**
- 4) The model **equations are covariant** under quantum unitary and classical canonical transformations
- 5) In the presence of an interaction potential, quantum purity  $\text{Tr}(\hat{\rho}^2)$  is not a constant of motion (**decoherence**)

→ **Challenging to satisfy all – currently, only one model on the market.**

## Ehrenfest (PDE) model

$$i\hbar \frac{\partial \hat{P}}{\partial t} + i\hbar \text{div}(\hat{P} \langle X_{\hat{H}} \rangle) = [\hat{H}, \hat{P}]$$

or equivalently,

$$\partial_t f + \text{div}(f \langle X_{\hat{H}} \rangle) = 0, \quad i\hbar (\partial_t + \langle X_{\hat{H}} \rangle \cdot \nabla) \hat{\mathcal{P}} = [\hat{H}, \hat{\mathcal{P}}]$$

- **Satisfies all consistency requirements**; known to suffer from **overdecoherence**
- The quantum dynamics **fully decouples** (drawback of Ehrenfest dynamics)

$$X_{\hat{H}} := (\partial_p \hat{H}, -\partial_q \hat{H}), \quad \hat{\mathcal{P}} = \hat{P}/f, \quad \langle X_{\hat{H}} \rangle = \text{Tr}(\hat{\mathcal{P}} X_{\hat{H}})$$

## Multi-trajectory Ehrenfest system

The equation for the classical density is solved by the **point-particle ansatz**<sup>\*</sup>

$$f(z, t) = \sum_{a=1}^N w_a \delta(z - \zeta_a(t)),$$

with  $\zeta_a(t) = (q_a(t), p_a(t))$ ,  $\dot{\zeta}_a = \langle \dot{X}_{\hat{H}} \rangle|_{z=\zeta_a}$ , weights  $w_a > 0$  and  $\sum_a w_a = 1$ .

$\langle \dot{X}_{\hat{H}} \rangle|_{z=\zeta_a}$  requires evaluating  $\hat{\rho}_a(t) := \widehat{\mathcal{P}}(\zeta_a(t), t)$  at all times, so that  $i\hbar \dot{\hat{\rho}}_a = [\hat{H}_a, \hat{\rho}_a]$ .

The resulting **multi-trajectory Ehrenfest system** reads

$$\dot{q}_a = \partial_{p_a} \langle \hat{\rho}_a | \hat{H}_a \rangle, \quad \dot{p}_a = -\partial_{q_a} \langle \hat{\rho}_a | \hat{H}_a \rangle, \quad i\hbar \dot{\hat{\rho}}_a = [\hat{H}_a, \hat{\rho}_a],$$

with  $\hat{H}_a = \hat{H}(\zeta_a)$  and  $\langle \hat{\rho}_a | \hat{H}_a \rangle = \text{Tr}(\hat{\rho}_a \hat{H}_a)$ .

<sup>\*</sup>**Computational particles** (not physical).

# Construction of the new hybrid model

*“Our new hybrid (PDE) model overcomes the **consistency issues**, enjoys both a variational and a Hamiltonian structure, and goes beyond Ehrenfest dynamics.”*

**Write classical mechanics in terms of Schrödinger-like wave functions!**

→ In the following, we briefly outline the main steps of the construction. The detailed derivations are beyond the scope of this talk.

## Step 1 (*Classical dynamics in a Hilbert space*)

The *Koopman–van Hove equation*

$$i\hbar\partial_t\Psi = \{i\hbar H, \Psi\} - (p\partial_p H - H)\Psi =: \widehat{\mathcal{L}}_H\Psi$$

yields classical Liouville dynamics  $\partial_t D = \{H, D\}$  for the phase-space density

$$D = |\Psi|^2 + \hbar\text{Im}\{\Psi^*, \Psi\} + \partial_p(p|\Psi|^2)$$

- Formally analogous to Schrödinger dynamics ( $\widehat{\mathcal{L}}_H$  is self-adjoint)
- Note that in the **Koopman–von Neumann equation** the conserved energy  $\int \Psi^* \{i\hbar H, \Psi\} dqdp = \int H \hbar \text{Im}\{\Psi^*, \Psi\} dqdp \neq \int |\Psi|^2 H dqdp$  is **different from the physical energy** and **vanishes** if  $\Psi$  is real
- The sign of the classical density  $D$  is preserved in time

$\Psi = \Psi(z)$  is a square-integrable wave function on phase space.

## Step 2 (Linear hybrid model)

Construction of **hybrid wave functions** and a linear hybrid PDE based on a classical two-particle (Koopman) wave function and **partial quantization**

$$\Psi(q, p, q', p') \rightarrow \Upsilon(z, x)$$

$$i\hbar\partial_t \Upsilon = \widehat{\mathcal{L}_H} \Upsilon := \{i\hbar\widehat{H}, \Upsilon\} - (p\partial_p \widehat{H} - \widehat{H})\Upsilon$$

→ Quantum positivity is guaranteed; classical positivity is not guaranteed (no proof).

We need to work harder...

$\Upsilon(z, x)$  is a square-integrable function of both the classical and quantum coordinates  $z$  and  $x$ .  
 $\widehat{H} = \widehat{H}(z, \hat{x}, \hat{p})$  is an operator-valued function on phase space.

## Step 3 (Non-linear hybrid model)

The construction of the final non-linear PDE is based on the following steps:

- **Exact factorization**:  $\Upsilon(z, x, t) = \chi(z, t)\psi(x, t; z)$
- **Madelung transform**:  $\chi(z, t) = \sqrt{f(z, t)}e^{iS(z, t)/\hbar}$ 
  - The hydrodynamic formulation allows us to identify the **classical phase**
- Derive a **phase-invariant** variational principle

All these steps require a lot of work (Lagrangians, Euler–Poincaré reduction, group actions, gauge connections. . . )!

# Equations of motion for the new MQC model

The **resulting equations** of the non-linear hybrid PDE read

$$\partial_t f + \operatorname{div}(f \mathcal{X}) = 0, \quad i\hbar(\partial_t + \mathcal{X} \cdot \nabla) \widehat{\mathcal{P}} = [\widehat{\mathcal{H}}, \widehat{\mathcal{P}}]$$

where  $\mathcal{X}$  and  $\widehat{\mathcal{H}}$  include  $\hbar$ -order back-reaction corrections to the Ehrenfest quantities:

$$\mathcal{X} = \langle X_{\widehat{H}} \rangle + \frac{\hbar}{2f} \left( \langle X_{\widehat{H}} \cdot \nabla | \widehat{\Gamma} \rangle - \langle \widehat{\Gamma} \cdot \nabla | X_{\widehat{H}} \rangle \right),$$

$$\widehat{\mathcal{H}} = \widehat{H} + \frac{i\hbar}{2f} \left[ 2\nabla \widehat{\mathcal{P}} + \widehat{\mathcal{P}} \nabla f, X_{\widehat{H}} \right],$$

where  $\widehat{\Gamma} = if[\widehat{\mathcal{P}}, \nabla \widehat{\mathcal{P}}] \rightarrow \text{"}\hbar\text{-correction" to the Ehrenfest model}$

*The new model overcomes consistency issues and goes beyond Ehrenfest dynamics  
Nevertheless, the underlying PDE is quite intimidating.*

How to solve it numerically?

→ The presence of **inverses and gradients** in the equations does not allow for a direct trajectory-based closure (like for Ehrenfest) of the form

$$f = \sum_a w_a \delta(z - z_a), \quad \hat{P} = \sum_a w_a \rho_a \delta(z - z_a).$$

## Regularization and *Koopmons*

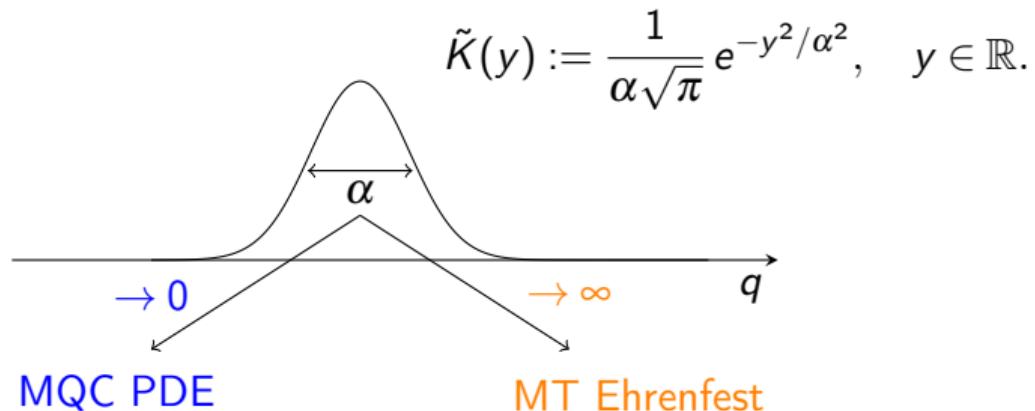
The *Koopmon* method uses a **variational regularization** to restore point-particle trajectories. The regularized Lagrangian reads

$$\bar{\ell} = \int_{T^*Q} \left( f \mathcal{A} \cdot \mathcal{X} + \langle \hat{P}, i\hbar \hat{\xi} - \hat{H} \rangle - a \underbrace{f^{-1}}_{\rightarrow \bar{f}^{-1}} \langle \bar{P}, i\hbar \underbrace{\{P, \hat{H}\}}_{\rightarrow \bar{P}} \rangle \right) dz,$$

where  $\bar{f} = K_\alpha * f$  and  $\bar{P} = K_\alpha * \hat{P}$  for some convolution kernel  $K_\alpha$  in phase space. The resulting regularized equations allow for delta-like expressions of  $f$  and  $\hat{P}$ , returning trajectories called *Koopmons*.

# The role of the regularization parameter $\alpha$

The kernel function  $K: T^*Q \rightarrow \mathbb{R}$  (in phase space) is chosen as a product of one-dimensional **normalized Gaussians**, i.e.,  $K(q, p) = \tilde{K}(q)\tilde{K}(p)$  with



MT = multi-trajectory. A **robust default** is  $\alpha = 0.5$ ,  $N = 500$ .

## Trajectory equations

$$\dot{q}_a = w_a^{-1} \partial_{p_a} \textcolor{blue}{h}, \quad \dot{p}_a = -w_a^{-1} \partial_{q_a} \textcolor{blue}{h}, \quad i\hbar \dot{\rho}_a = w_a^{-1} [\partial_{\rho_a} \textcolor{blue}{h}, \rho_a]$$

where

$$\textcolor{blue}{h} = \sum_a w_a \left\langle \rho_a, \hat{H}_a + i\hbar \sum_b w_b [\rho_b, \mathcal{J}_{ab}] \right\rangle, \quad \partial_{\rho_a} \textcolor{blue}{h} = \hat{H}_a + i\hbar \sum_b w_b [\rho_b, \mathcal{J}_{ab} - \mathcal{J}_{ba}],$$

$$\mathcal{J}_{ab} = \frac{1}{2} \int_{T^*Q} \frac{K_a \{ K_b, \hat{H} \}}{\sum_c w_c K_c} dz, \quad K_s(z, t) := K_\alpha(z - z_s(t))$$

# Implementation

## Spatial integration (phase-space integral $\mathcal{I}_{ab}$ )

Implemented using the **composite trapezoidal rule** with a **time-dependent phase-space box** that adapts to the distribution at each time step.

## Time integration

- Executed using the **fourth-order Runge–Kutta method (RK4)**
- A **time-adaptive variant** of RK4 is also available
- A **symplectic variant** is also available (fixed time steps)

## Selected test cases studied

- *Tully 1-3* (high, intermediate, low momentum)
- *Double Arch* (high and low momentum)
- *Rabi* (ultrastrong, deep-strong, Jaynes–Cummings)

## Quantities of interest

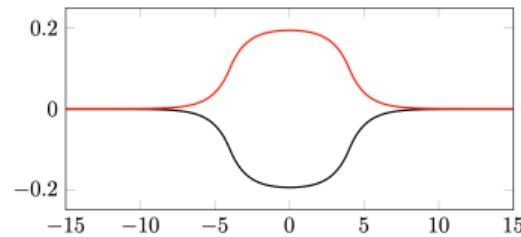
Liouville density (including projections), Bloch vector (incl. purity), populations

## Quantum reference

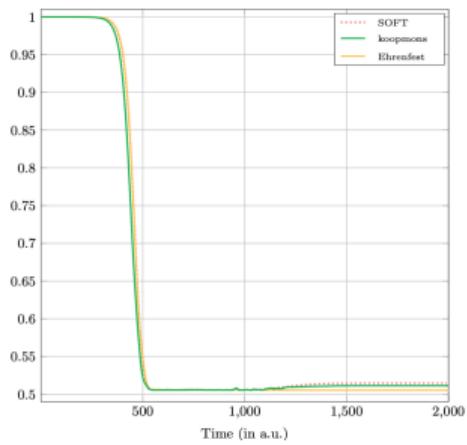
We benchmark against a **fully quantum TDSE solution** (*Split-Operator Fourier Transform*, SOFT) and visualize the corresponding **Wigner distributions**.

## Double Arch (high momentum)

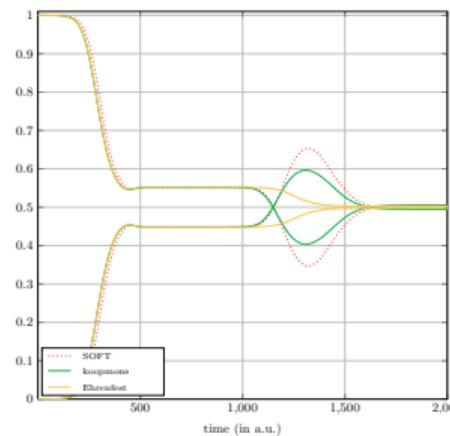
$N = 500$ ;  $\alpha = 0.5$ ;  $q_0 = -15$ ,  $p_0 = 40$ ;  $\rho_0 = [0, 0; 0, 1]$ ;  $dt = 2$



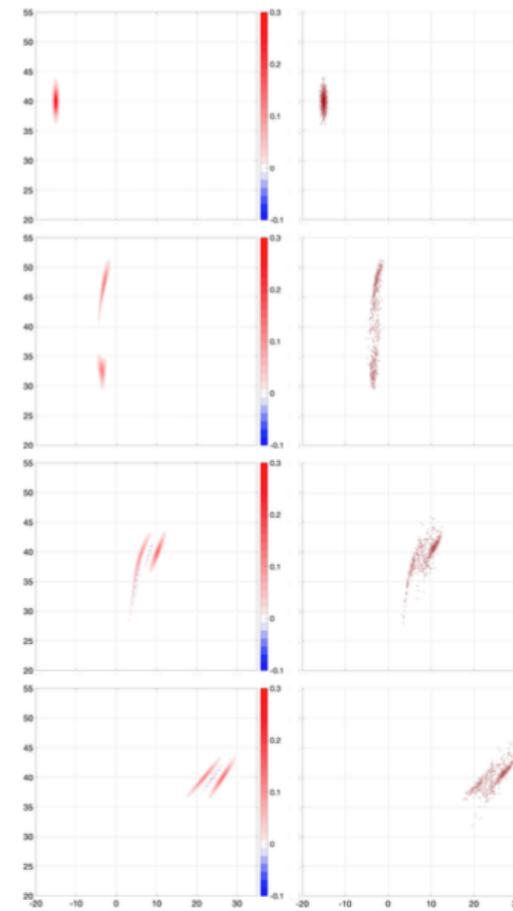
Purity



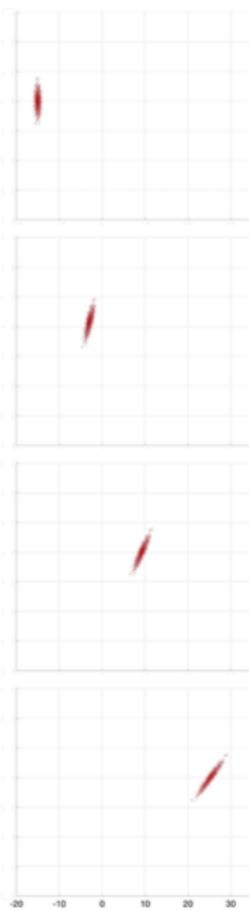
Population



Quantum



Koopmans

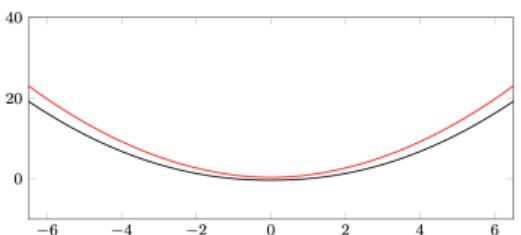


Ehrenfest

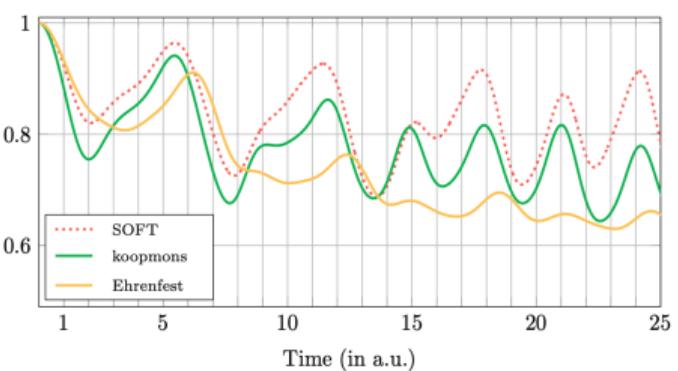
Snapshots at  $t = 0, 600, 1200, 2000$

Rabi Hamiltonian (ultrastrong),  $\hat{H}(q, p) = \frac{1}{2} \left( \frac{p^2}{m} + m\omega^2 q^2 \right) \hat{\sigma}_0 + \gamma q \hat{\sigma}_z + B_0 \hat{\sigma}_x$

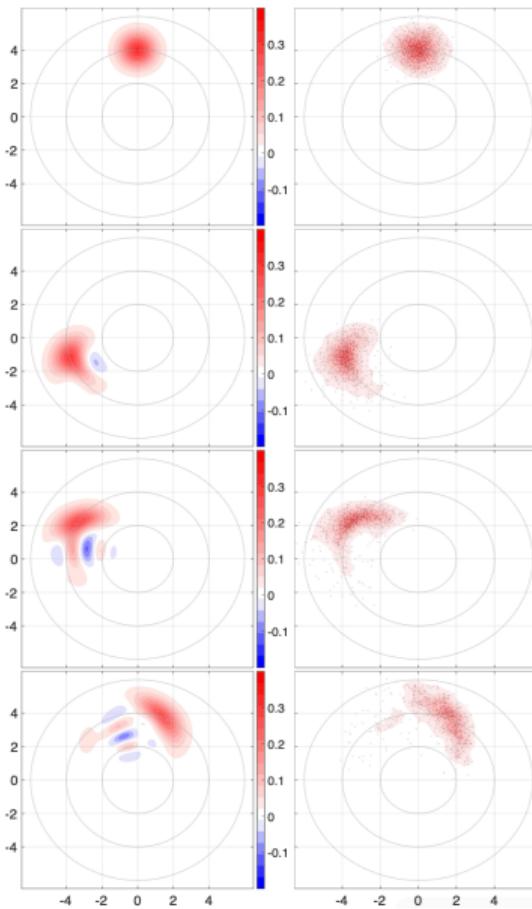
$N = 500$ ;  $\alpha = 0.5$ ;  $q_0 = 0$ ,  $p_0 = 4$ ;  $\rho_0 = [1, 1; 1, 1]/2$ ;  $dt = 0.05$



Purity



Quantum



Koopmans

Ehrenfest

Snapshots at  $t = 0, 10.5, 17.5, 25$

# Work in progress (momentum coupling)

**Rashba Hamiltonians** (1D models for nanowires)

In the following, let  $m, \omega > 0$ ,  $\alpha_R > 0$  (Rashba coupling),  $B_0 \in \mathbb{R}$  (magnetic field), and  $g_e \in \mathbb{R}$  (Landé g-factor). We study Hamiltonians of the form

$$\hat{H}(q, p) = \frac{1}{2} \left( \frac{p^2}{m} + m\omega^2 q^2 \right) \hat{\sigma}_0 + p\alpha_R \hat{\sigma}_y + \frac{1}{4} g_e B_0 \hat{\sigma}_x.$$

**Classification**

$$E_{SO} := \frac{m\alpha_R^2}{2}, \quad E_Z := \frac{1}{4} g_e B_0.$$

Define  $R := 2E_{SO}/|E_Z|$ . The regime is

**Zeeman dominated** if  $R < 1$ , and **Rashba dominated** for  $R > 1$ .

We work in atomic units, i.e.,  $\hbar = 1$ .

## **The following test cases have been studied**

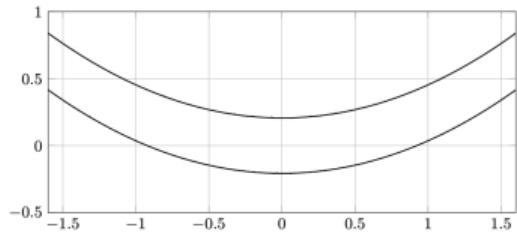
- Rashba dominated (ballistic and non-ballistic for *InAs*)
- Zeeman dominated (ballistic and non-ballistic for *InSb* & *GaAs*)

## **Quantities of interest**

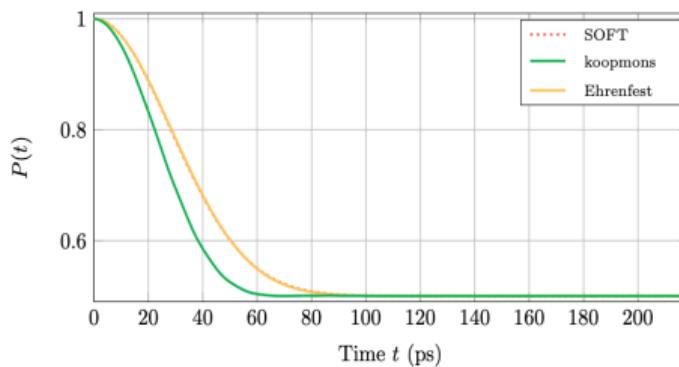
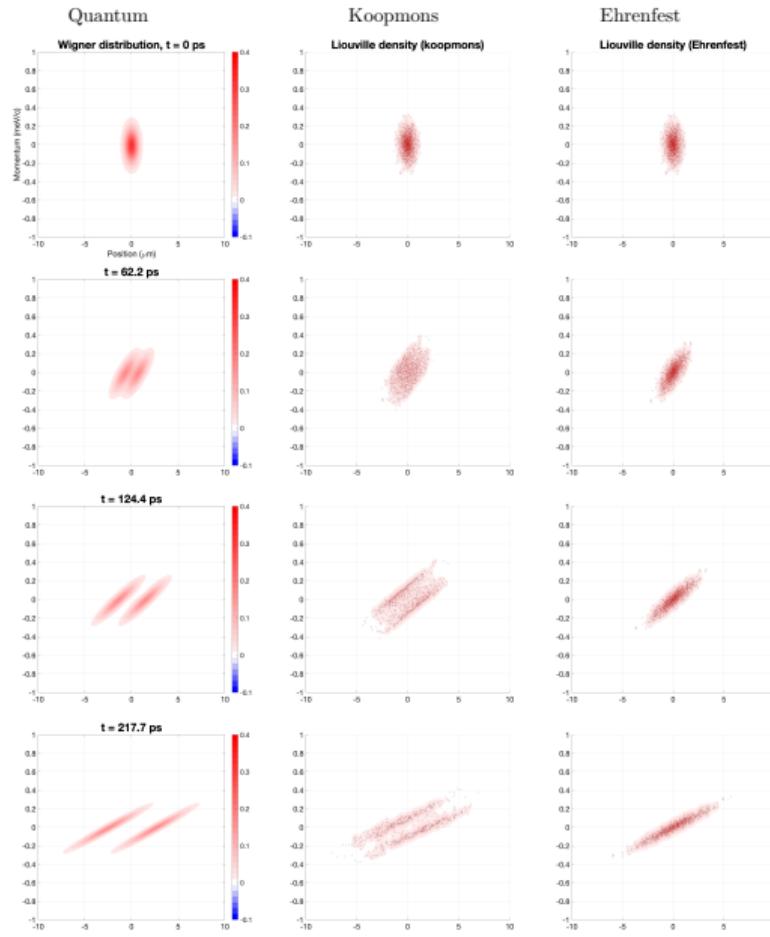
Liouville density (including projections), Bloch vector (incl. purity), uncertainty of the spin current

## Zeeman dominated, ballistic (InSb)

$N = 500$ ;  $\alpha = 0.5$ ;  $q_0 = 0$ ,  $p_0 = 0$ ;  $\rho_0 = [1, 0; 0, 0]$ ;  $dt = 217.7/400$  [ps]



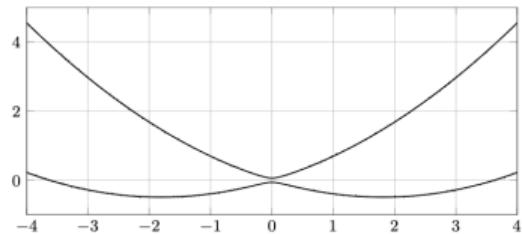
Evolution of purity



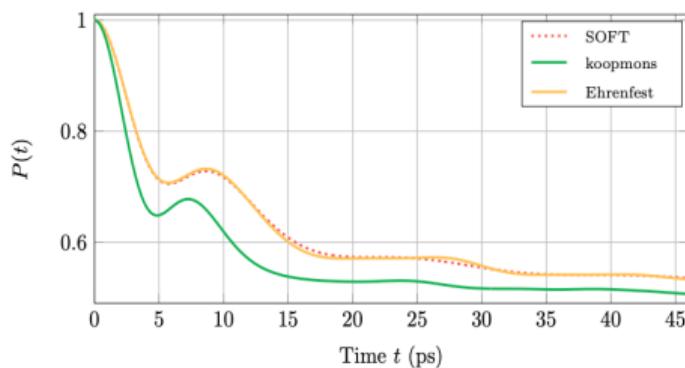
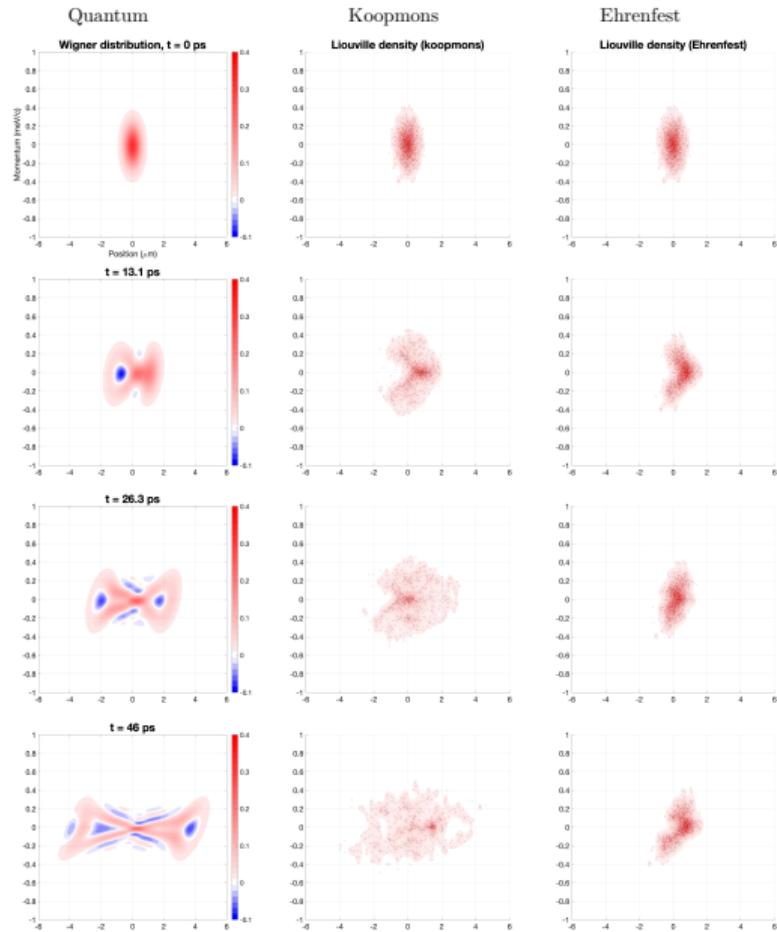
Snapshots at  $t = 0, 62.2, 124.4, 217.7$  [ps]

## Rashba dominated, ballistic (InAs)

$N = 500$ ;  $\alpha = 0.5$ ;  $q_0 = 0$ ,  $p_0 = 0$ ;  $\rho_0 = [1, 0; 0, 0]$ ;  $dt = 46/400$  [ps]



Evolution of purity



Snapshots at  $t = 0, 13.1, 26.3, 46$  [ps]

# Hybrid Ehrenfest–Koopman dynamics

## Challenge

*Koopmons* simulations achieve accuracy levels (in both sectors) significantly beyond those of Ehrenfest dynamics. The price, however, is **higher computational cost**, which typically increases further as  $\alpha \rightarrow 0$  (or in higher dimensions\*).

## Goal

Develop a numerical method that **switches between Ehrenfest and *Koopmons*** in order to significantly reduce computational cost.

\*Note that for a broad class of Hamiltonians, the *Koopmons* scheme can be shown to admit an advantageous factorization property in dimensions  $d \geq 2$  (linear combinations of integrals in phase space).

## Problem

How can we identify regions where Ehrenfest dynamics is sufficiently accurate, and regions where the *Koopmans correction becomes essential*?

## Idea

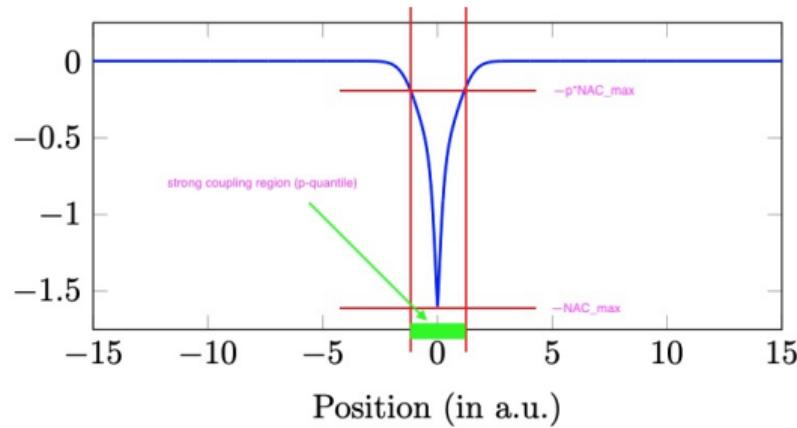
In nonadiabatic QC dynamics, the **nonadiabatic coupling (NAC) vectors** provide valuable information about regions of weak and strong coupling between the PESs.

## Please note

The following strategy is our initial implementation for the *Tully models* and we are able to **significantly reduce computational cost**, while still obtaining reliable results in both the quantum and classical sectors. However, **feedback and suggestions for possible improvements are welcome** (e.g., approaches inspired by *surface hopping*).

## Defining strong coupling via quantiles

- Define the strong-coupling region (SCR) via a quantile threshold  $p \in [0, 1]$
- We define:  $SCR := [p \cdot NAC_{\max}, NAC_{\max}]$



$$NAC_{\max} := \max_x |NAC(x)|$$

## First Approach

- At each time step, compute the number of particles inside the SCR:

$$n_{\text{SCR}}(t) = \#\left\{a \in \{1, \dots, N\} : q_a(t) \in \text{SCR}\right\}$$

- If  $n_{\text{SCR}}(t) > N_{\text{SCR}}$  for some given  $N_{\text{SCR}} > 0$ , the simulation switches from the Ehrenfest to the *Koopmans* code

## Implementation

- A trigger variable  $\text{trigger} \in \{0, 1\}$  controls the switch  
( $\text{trigger} = 0$ : Ehrenfest,  $\text{trigger} = 1$ : *Koopmans*)  
→ All *Koopmans*-specific correction terms are skipped if  $\text{trigger} = 0$

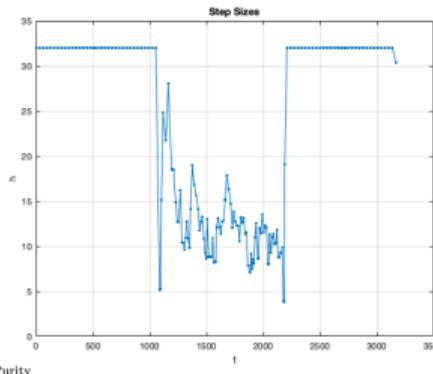
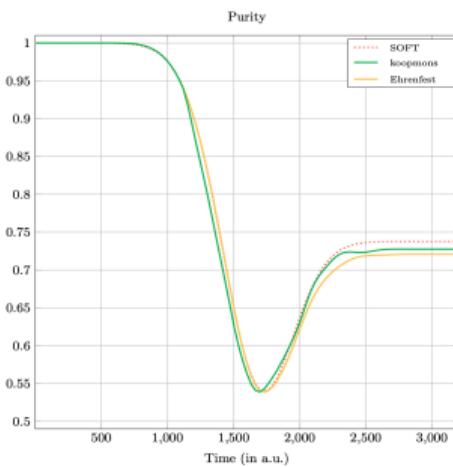
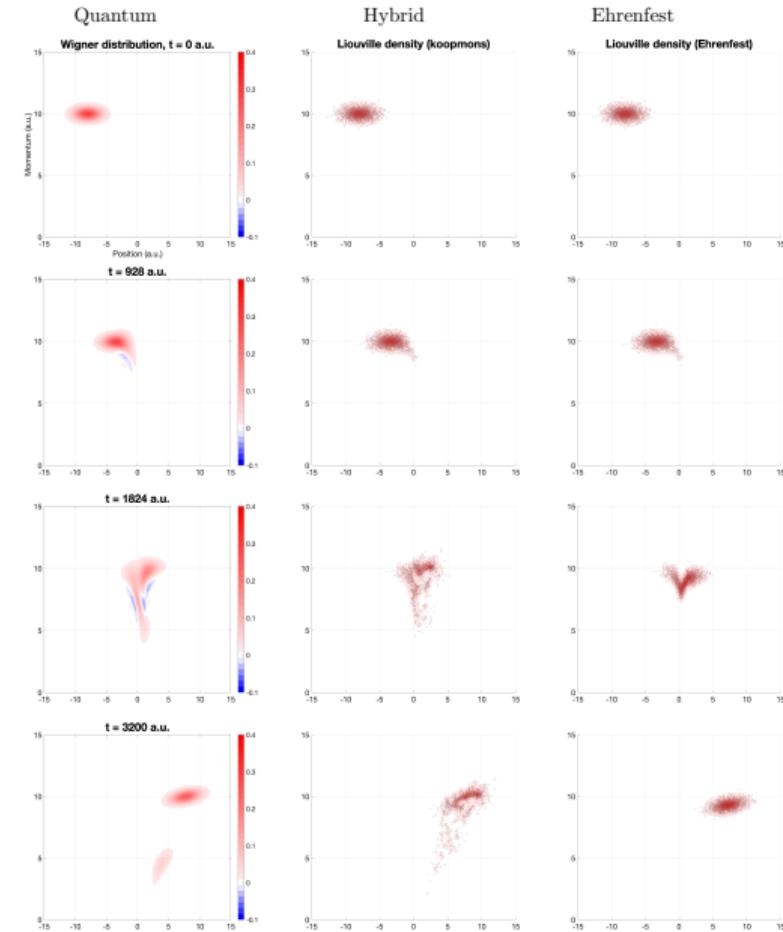
# Experiment 1

## Summary

- Number of particles inside the SCR:  $N_{\text{SCR}} = 250$
- Quantile threshold:  $p = 5\%$   $\rightarrow$   $\text{SCR} = [-1.54, 1.54]$
- Switching times:  $t_{\text{on}} = 1,120$  a.u.,  $t_{\text{off}} = 2,176$  a.u.
- Runtime of the hybrid code: 1,801 s
  - $\approx 0.094 \times$  *Koopmans reference* (19,228 s) [0.42  $\times$  adaptive]
  - $\approx 44 \times$  Ehrenfest reference (40 s)

## Tully 1 (low momentum)

$N = 1000$ ;  $\alpha = 0.325$ ;  $q_0 = -8$ ,  $p_0 = 10$ ;  $\rho_0 = [1, 0; 0, 0]$ ;  $dt$  = "adaptive"



Snapshots at  $t = 0, 928, 1824, 3200$  [au]

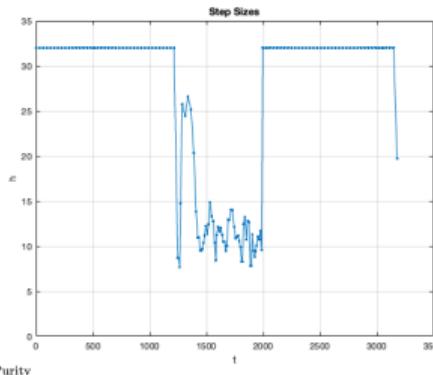
# Experiment 2

## Summary

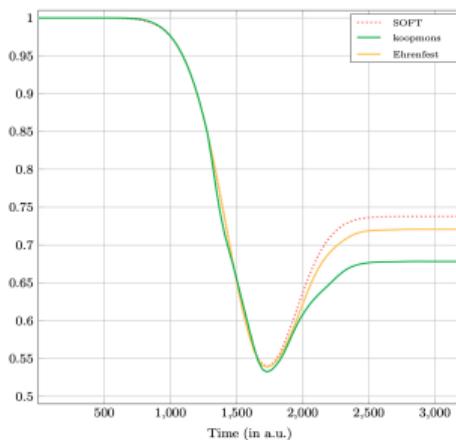
- Number of particles inside the SCR:  $N_{\text{SCR}} = 450$
- Quantile threshold:  $p = 5\%$   $\rightarrow$   $\text{SCR} = [-1.54, 1.54]$
- Switching times:  $t_{\text{on}} = 1,280$  a.u.,  $t_{\text{off}} = 1,952$  a.u.
- Runtime of the hybrid code: 1,080 s
  - $\approx 0.056 \times$  *Koopmans reference* (19,228 s) [0.25  $\times$  adaptive]
  - $\approx 27 \times$  Ehrenfest reference (40 s)

## Tully 1 (low momentum)

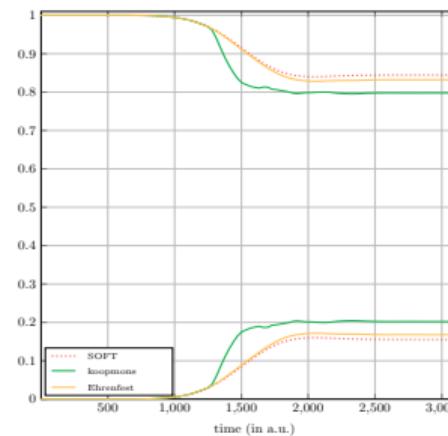
$N = 1000$ ;  $\alpha = 0.325$ ;  $q_0 = -8$ ,  $p_0 = 10$ ;  $\rho_0 = [1, 0; 0, 0]$ ;  $dt = \text{"adaptive"}$



Purity

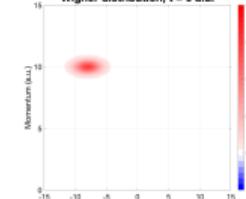


Population

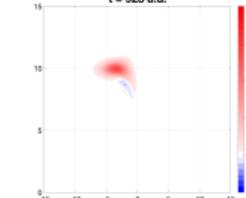


## Quantum

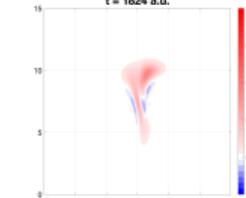
Wigner distribution,  $t = 0$  a.u.



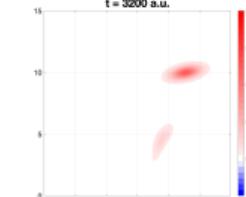
$t = 928$  a.u.



$t = 1824$  a.u.

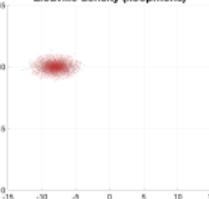
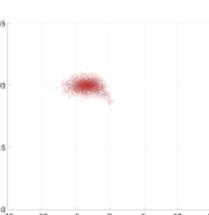
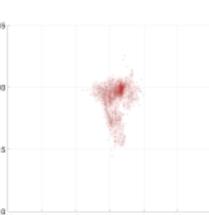
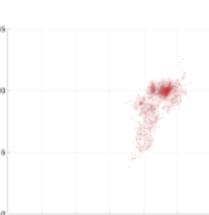


$t = 3200$  a.u.



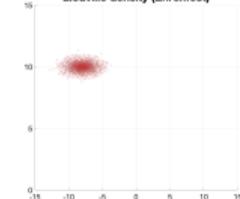
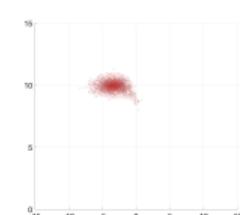
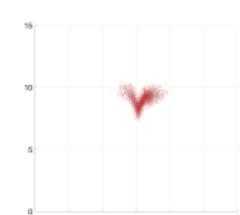
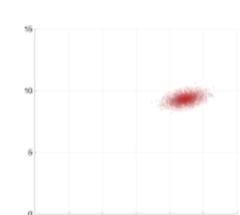
## Hybrid

Liouville density (koopmans)



## Ehrenfest

Liouville density (Ehrenfest)



Snapshots at  $t = 0, 928, 1824, 3200$  [au]

## Final remarks

- New trajectory-based Hamiltonian approach for simulating MQC dynamics
- The *Koopmans* method **provides a solid foundation for developing closure methods** through the underlying variational structure
- Numerical tests for many different models (*Tully, Double Arch, Rabi, Rashba,...*)
- The hybrid Ehrenfest–Koopman dynamics show strong potential in first tests, but a rigorous switching strategy remains open

Thank you.