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Motivation for mixed quantum-classical (MQC) models

Some applications

Classical Subsystem Quantum Subsystem

Foundations measuring device measured system

Cosmology gravity matter

Chemistry nuclei electrons

Overcome the curse of dimensionality (at least to some extent) in simulations of
many-body quantum systems, e.g. in molecular dynamics.



Classical states – pure vs mixed

· Classical pure states are vectors in phase space (point particles)

Hamilton’s equations: q̇ = ∂pH, ṗ =−∂qH

H : T ∗Q → R is a phase-space function (Hamiltonian)

· Classical mixed states are positive densities f > 0 with
∫
f (q,p)dqdp = 1

Liouville equation: ∂t f = {H, f }

Note that {g ,h}= ∂qg∂ph−∂pg∂qh denotes the canonical Poisson bracket.



Quantum states – pure vs mixed

· Quantum pure states are normalized wave functions in L2

Schrödinger equation (TDSE): i h̄∂tψ = Ĥψ

Ĥ : L2 → L2 is a self-adjoint operator, usually obtained by quantization, i.e.,

H(q,p)→ Ĥ(q̂, p̂), q̂ψ = qψ, p̂ψ =−i h̄∇ψ, [q̂, p̂] = q̂p̂− p̂q̂ = i h̄

→ Unitary evolution: ψ(t) = U(t)ψ0 = e−i Ĥt/h̄ψ0

· Quantum mixed states are positive-semidefinite operators ρ̂ with Tr(ρ̂) = 1

von Neumann equation: i h̄∂t ρ̂ = [Ĥ, ρ̂]



Notational setup for the hybrid model

· Hamiltonian operator Ĥ = Ĥ(z): an operator-valued function on phase space(
e.g. Ĥ(z) = Ĥ(q,p) = 1

2

(
p2

m +mω2q2
)

σ̂0+ γqσ̂z , m, ω, γ > 0
)

· Hybrid density P̂ = P̂(z): (sufficiently smooth) distribution taking values in the
space Her(H ) of Hermitian operators on the quantum Hilbert space H

· The classical Liouville density and quantum density matrix are recovered via

f = Tr P̂ and ρ̂ =
∫

T ∗Q
P̂ dqdp

Think of P̂(z) = f (z)ρ̂(z) = f (z)ψ(•;z)ψ(•;z)†.



Aim: Propose MQC models that satisfy the following consistency criteria:

1) The classical subsystem is described by a positive probability density

2) The quantum subsystem is described by a positive-semidefinite density operator

3) In the absence of a coupling potential, the mixed dynamics reduces to
uncoupled quantum and classical flows

4) The model equations are covariant under quantum unitary and classical
canonical transformations

5) In the presence of an interaction potential, quantum purity Tr(ρ̂2) is not a
constant of motion (decoherence)

→ Challenging to satisfy all – currently, only one model on the market.



Ehrenfest (PDE) model

i h̄
∂ P̂

∂ t
+ i h̄div

(
P̂⟨X

Ĥ
⟩
)
=

[
Ĥ, P̂

]

or equivalently,

∂t f +div
(
f ⟨X

Ĥ
⟩
)
= 0, i h̄

(
∂t + ⟨X

Ĥ
⟩ ·∇

)
P̂ = [Ĥ, P̂]

· Satisfies all consistency requirements; known to suffer from overdecoherence

· The quantum dynamics fully decouples (drawback of Ehrenfest dynamics)

X
Ĥ
:= (∂pĤ,−∂qĤ), P̂ = P̂/f , ⟨X

Ĥ
⟩=Tr(P̂X

Ĥ
)



Multi-trajectory Ehrenfest system

The equation for the classical density is solved by the point-particle ansatz∗

f (z , t) =
N

∑
a=1

waδ (z−ζa(t)),

with ζa(t) = (qa(t),pa(t)), ζ̇a = ⟨X
Ĥ
⟩|z=ζa

, weights wa > 0 and ∑awa = 1.

⟨X
Ĥ
⟩|z=ζa

requires evaluating ρ̂a(t) := P̂(ζa(t), t) at all times, so that i h̄ ˙̂ρa = [Ĥa, ρ̂a].

The resulting multi-trajectory Ehrenfest system reads

q̇a = ∂pa⟨ρ̂a|Ĥa⟩, ṗa =−∂qa⟨ρ̂a|Ĥa⟩, i h̄ ˙̂ρa = [Ĥa, ρ̂a],

with Ĥa = Ĥ(ζa) and ⟨ρ̂a|Ĥa⟩= Tr(ρ̂aĤa).

∗Computational particles (not physical).



Construction of the new hybrid model

“Our new hybrid (PDE) model overcomes the consistency issues, enjoys both a
variational and a Hamiltonian structure, and goes beyond Ehrenfest dynamics.”

Write classical mechanics in terms of Schrödinger-like wave functions!

→ In the following, we briefly outline the main steps of the construction. The detailed
derivations are beyond the scope of this talk.



Step 1 (Classical dynamics in a Hilbert space)

The Koopman–van Hove equation

i h̄∂tΨ= {i h̄H,Ψ}−(p∂pH−H)Ψ =: L̂HΨ

yields classical Liouville dynamics ∂tD = {H,D} for the phase-space density

D = |Ψ|2+ h̄ Im{Ψ∗,Ψ}+∂p(p|Ψ|2)

· Formally analogous to Schrödinger dynamics (L̂H is self-adjoint)

· Note that in the Koopman–von Neumann equation the conserved energy∫
Ψ∗{i h̄H,Ψ}dqdp =

∫
Hh̄ Im{Ψ∗,Ψ}dqdp ̸= ∫ |Ψ|2H dqdp is different from the

physical energy and vanishes if Ψ is real

· The sign of the classical density D is preserved in time

Ψ=Ψ(z) is a square-integrable wave function on phase space.



Step 2 (Linear hybrid model)

Construction of hybrid wave functions and a linear hybrid PDE based on a classical
two-particle (Koopman) wave function and partial quantization

Ψ(q,p,q′,p′)→Υ(z ,x)

i h̄∂tΥ= L̂
Ĥ
Υ := {i h̄Ĥ,Υ}−

(
p∂pĤ− Ĥ

)
Υ

→ Quantum positivity is guaranteed; classical positivity is not guaranteed (no proof).

We need to work harder...

Υ(z ,x) is a square-integrable function of both the classical and quantum coordinates z and x .
Ĥ = Ĥ(z , x̂ , p̂) is an operator-valued function on phase space.



Step 3 (Non-linear hybrid model)

The construction of the final non-linear PDE is based on the following steps:

· Exact factorization: Υ(z ,x , t) = χ(z , t)ψ(x , t;z)

· Madelung transform: χ(z , t) =
√

f (z , t)e iS(z ,t)/h̄

→ The hydrodynamic formulation allows us to identify the classical phase

· Derive a phase-invariant variational principle

All these steps require a lot of work (Lagrangians, Euler–Poincaré reduction,
group actions, gauge connections. . . )!



Equations of motion for the new MQC model

The resulting equations of the non-linear hybrid PDE read

∂t f +div
(
f X

)
= 0, i h̄

(
∂t +X ·∇

)
P̂ = [Ĥ , P̂]

where X and Ĥ include h̄-order back-reaction corrections to the Ehrenfest quantities:

X = ⟨X
Ĥ
⟩+ h̄

2f

(〈
X
Ĥ
·∇ | Γ̂

〉
−
〈
Γ̂ ·∇ | X

Ĥ

〉)
,

Ĥ = Ĥ+
i h̄

2f

[
2∇P̂ +P̂ ∇f ,X

Ĥ

]
,

where Γ̂ = if [P̂,∇P̂] → “ h̄ -correction” to the Ehrenfest model



The new model overcomes consistency issues and goes beyond Ehrenfest dynamics
Nevertheless, the underlying PDE is quite intimidating.

How to solve it numerically?

→ The presence of inverses and gradients in the equations does not allow for a direct
trajectory-based closure (like for Ehrenfest) of the form

f = ∑
a

waδ (z− za), P̂ = ∑
a

waρaδ (z− za).



Regularization and Koopmons

The Koopmon method uses a variational regularization to restore point-particle
trajectories. The regularized Lagrangian reads

ℓ̄=
∫

T ∗Q


f A ·X + ⟨P̂, i h̄ξ̂ − Ĥ⟩−a f −1

︸︷︷︸
→ f̄ −1

⟨P̄, i h̄{ P︸︷︷︸
→ P̄

, Ĥ}
〉

dz ,

where f̄ = Kα ∗ f and P̄ = Kα ∗ P̂ for some convolution kernel Kα in phase space.
The resulting regularized equations allow for delta-like expressions of f and P̂ , returning
trajectories called Koopmons.



The role of the regularization parameter α

The kernel function K : T ∗Q → R (in phase space) is chosen as a product of
one-dimensional normalized Gaussians, i.e., K (q,p) = K̃ (q)K̃ (p) with

K̃ (y) :=
1

α
√

π
e−y2/α2

, y ∈ R.

α

→ 0 → ∞

MQC PDE MT Ehrenfest

q

MT = multi-trajectory. A robust default is α = 0.5, N = 500.



Trajectory equations

q̇a = w−1
a ∂pah, ṗa =−w−1

a ∂qah, i h̄ρ̇a = w−1
a [∂ρah,ρa]

where

h = ∑
a

wa

〈
ρa, Ĥa+ i h̄∑

b

wb[ρb,Iab]
〉
, ∂ρah = Ĥa+ i h̄∑

b

wb[ρb,Iab−Iba],

Iab =
1
2

∫

T ∗Q

Ka{Kb, Ĥ}
∑c wcKc

dz , Ks(z , t) := Kα(z− zs(t))



Implementation

Spatial integration (phase-space integral Iab)

Implemented using the composite trapezoidal rule with a time-dependent
phase-space box that adapts to the distribution at each time step.

Time integration

· Executed using the fourth-order Runge–Kutta method (RK4)

· A time-adaptive variant of RK4 is also available

· A symplectic variant is also available (fixed time steps)



Selected test cases studied

· Tully 1-3 (high, intermediate, low momentum)

· Double Arch (high and low momentum)

· Rabi (ultrastrong, deep-strong, Jaynes–Cummings)

Quantities of interest

Liouville density (including projections), Bloch vector (incl. purity), populations

Quantum reference

We benchmark against a fully quantum TDSE solution (Split-Operator Fourier
Transform, SOFT) and visualize the corresponding Wigner distributions.



Quantum Koopmons Ehrenfest

Snapshots at t = 0, 600, 1200, 2000

N = 500; ω = 0.5; q0 = →15, p0 = 40; ε0 = [0, 0; 0, 1]; dt = 2

500 1,000 1,500 2,000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time (in a.u.)

Population

SOFT

koopmons

Ehrenfest

Double Arch (high momentum)



Quantum Koopmons Ehrenfest

Snapshots at t = 0, 10.5, 17.5, 25

Rabi Hamiltonian (ultrastrong), Ĥ(q, p) = 1
2

(
p2

m + mω2q2
)
ε̂0 + ϑqε̂z + B0ε̂x

N = 500; ω = 0.5; q0 = 0, p0 = 4; ε0 = [1, 1; 1, 1]/2; dt = 0.05



Work in progress (momentum coupling)

Rashba Hamiltonians (1D models for nanowires)

In the following, let m,ω > 0, αR > 0 (Rashba coupling), B0 ∈ R (magnetic field), and
ge ∈ R (Landé g-factor). We study Hamiltonians of the form

Ĥ(q,p) =
1
2

(
p2

m
+mω

2q2
)

σ̂0+pαR σ̂y +
1
4
geB0σ̂x .

Classification

ESO :=
mα2

R

2
, EZ :=

1
4
geB0.

Define R := 2ESO/|EZ |. The regime is

Zeeman dominated if R < 1, and Rashba dominated for R > 1.

We work in atomic units, i.e., h̄ = 1.



The following test cases have been studied

· Rashba dominated (ballistic and non-ballistic for InAs)

· Zeeman dominated (ballistic and non-ballistic for InSb & GaAs)

Quantities of interest

Liouville density (including projections), Bloch vector (incl. purity), uncertainty of the
spin current



Quantum Koopmons Ehrenfest
Zeeman dominated, ballistic (InSb)

Snapshots at t = 0, 62.2, 124.4, 217.7 [ps]

N = 500; ω = 0.5; q0 = 0, p0 = 0; ε0 = [1, 0; 0, 0]; dt = 217.7/400[ps]



Quantum Koopmons Ehrenfest
Rashba dominated, ballistic (InAs)

Snapshots at t = 0, 13.1, 26.3, 46 [ps]

N = 500; ω = 0.5; q0 = 0, p0 = 0; ε0 = [1, 0; 0, 0]; dt = 46/400[ps]



Hybrid Ehrenfest–Koopman dynamics

Challenge

Koopmons simulations achieve accuracy levels (in both sectors) significantly beyond
those of Ehrenfest dynamics. The price, however, is higher computational cost,
which typically increases further as α → 0 (or in higher dimensions∗).

Goal

Develop a numerical method that switches between Ehrenfest and Koopmons in
order to significantly reduce computational cost.

∗Note that for a broad class of Hamiltonians, the Koopmons scheme can be shown to admit an advantageous
factorization property in dimensions d ≥ 2 (linear combinations of integrals in phase space).



Problem

How can we identify regions where Ehrenfest dynamics is sufficiently accurate, and
regions where the Koopmons correction becomes essential?

Idea

In nonadiabatic QC dynamics, the nonadiabatic coupling (NAC) vectors provide
valuable information about regions of weak and strong coupling between the PESs.

Please note

The following strategy is our initial implementation for the Tully models and we are
able to significantly reduce computational cost, while still obtaining reliable results
in both the quantum and classical sectors. However, feedback and suggestions for
possible improvements are welcome (e.g., approaches inspired by surface hopping).



Defining strong coupling via quantiles

· Define the strong-coupling region (SCR) via a quantile threshold p ∈ [0,1]

· We define: SCR := [p ·NACmax, NACmax]

NACmax := maxx |NAC(x)|



First Approach

· At each time step, compute the number of particles inside the SCR:

nSCR(t) = #
{
a ∈ {1, . . .N} : qa(t) ∈ SCR

}

· If nSCR(t)> NSCR for some given NSCR > 0, the simulation switches from the
Ehrenfest to the Koopmons code

Implementation

· A trigger variable trigger ∈ {0,1} controls the switch
(trigger= 0: Ehrenfest, trigger= 1: Koopmons)
→ All Koopmons-specific correction terms are skipped if trigger= 0



Experiment 1

Summary

· Number of particles inside the SCR: NSCR = 250

· Quantile threshold: p = 5% → SCR = [−1.54,1.54]

· Switching times: ton = 1,120 a.u., toff = 2,176 a.u.

· Runtime of the hybrid code: 1,801 s
≈ 0.094× Koopmons reference (19,228 s) [0.42× adaptive]
≈ 44× Ehrenfest reference (40 s)



Tully 1 (low momentum)

N = 1000; ω = 0.325; q0 = →8, p0 = 10; ε0 = [1, 0; 0, 0]; dt = “adaptive→→

Snapshots at t = 0, 928, 1824, 3200 [au]

Quantum Hybrid Ehrenfest
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Experiment 2

Summary

· Number of particles inside the SCR: NSCR = 450

· Quantile threshold: p = 5% → SCR = [−1.54,1.54]

· Switching times: ton = 1,280 a.u., toff = 1,952 a.u.

· Runtime of the hybrid code: 1,080 s
≈ 0.056× Koopmons reference (19,228 s) [0.25× adaptive]
≈ 27× Ehrenfest reference (40 s)



Tully 1 (low momentum)

N = 1000; ω = 0.325; q0 = →8, p0 = 10; ε0 = [1, 0; 0, 0]; dt = “adaptive→→

Snapshots at t = 0, 928, 1824, 3200 [au]

Quantum Hybrid Ehrenfest
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Final remarks

· New trajectory-based Hamiltonian approach for simulating MQC dynamics

· The Koopmons method provides a solid foundation for developing closure
methods through the underlying variational structure

· Numerical tests for many different models (Tully, Double Arch, Rabi, Rashba,. . . )

· The hybrid Ehrenfest–Koopman dynamics show strong potential in first tests, but
a rigorous switching strategy remains open

Thank you.


