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Motivation of mixed quantum-classical (MQC) models

Some applications

Classical Subsystem Quantum Subsystem

Foundations measuring device measured system

Cosmology gravity matter

Chemistry nuclei electrons

Overcome the curse of dimensionality (at least to some extend) in simulations of
many-body quantum systems, e.g. in molecular dynamics.



Setting the stage

Quantum & Classical (mixed states)

· x denotes quantum coordinates

· Quantum dynamics: von Neumann equation

· i h̄∂t ρ̂ = [Ĥ, ρ̂], where ρ̂ is a density matrix, ρ̂ ∈ Her(H ), Tr(ρ̂) = 1

· z = (q,p) ∈ T ∗Q (phase space) denotes classical coordinates

· Classical dynamics: Liouville equation

· ∂t f = {H, f }, where f > 0 and
∫
T ∗Q f (q,p)dqdp = 1

{·, ·} is the canonical Poisson bracket, [·, ·] the commutator.



Setup for the hybrid model

· Hamiltonian operator Ĥ = Ĥ(z): operator-valued function on phase space(
e.g. Ĥ(q,p) = 1

2

(
p2

m +mω2q2
)

σ̂0+ γqσ̂z , m, ω, γ > 0
)

· P̂ = P̂(z) denotes a (sufficiently smooth) distribution taking values in the space
Her(H ) of Hermitian operators on the quantum Hilbert space H

· The classical Liouville density and the quantum density matrix are given by

f = Tr P̂ and ρ̂ =
∫
T ∗Q

P̂ dqdp

The hybrid density operator can be thought of as P̂(z) = f (z)ρ̂(z) = f (z)ψ(•;z)ψ(•;z)†.



Aim: Propose MQC models satisfying all the following consistency criteria:

1) The classical subsystem is described by a positive probability density

2) The quantum subsystem is described by a positive semidefinite density operator

3) In the absence of a coupling potential, the mixed dynamics reduces to
uncoupled quantum and classical flows

4) The model equations are covariant under both quantum unitary transformations
and classical canonical transformations

5) In the presence of an interaction potential, quantum purity Tr(ρ̂2) is not a
constant of motion (decoherence)

→ Difficult to fulfil them all at the same time! Only one model on the market.



Ehrenfest model

i h̄
∂ P̂

∂ t
+ i h̄div

(
P̂⟨X

Ĥ
⟩
)
=

[
Ĥ, P̂

]
or equivalently,

∂t f +div
(
f ⟨X

Ĥ
⟩
)
= 0, i h̄

(
∂t + ⟨X

Ĥ
⟩ ·∇

)
P̂ = [Ĥ, P̂]

· Fulfils all consistency requirements, known to suffer from overdecoherence

· The quantum dynamics decouples entirely (drawback of Ehrenfest dynamics)

X
Ĥ
:= (∂pĤ,−∂qĤ), ψ = ψ(•;z), Ĥ = Ĥ(z), P̂ = P̂/f , ⟨X

Ĥ
⟩=Tr(P̂X

Ĥ
)



Multi-trajectory Ehrenfest system

The equation for the classical density f is solved by the point-particle ansatz

f (z , t) =
N

∑
a=1

waδ (z−ζa(t)),

with ζa(t) = (qa(t),pa(t)), ζ̇a = ⟨X
Ĥ
⟩|z=ζa

, and weights wa > 0 such that ∑awa = 1.

⟨X
Ĥ
⟩|z=ζa

requires evaluating ρ̂a(t) := P̂(ζa(t), t) at all times, so that i h̄ ˙̂ρa = [Ĥa, ρ̂a].

The resulting multi-trajectory Ehrenfest system reads

q̇a = ∂pa⟨ρ̂a|Ĥa⟩, ṗa =−∂qa⟨ρ̂a|Ĥa⟩, i h̄ ˙̂ρa = [Ĥa, ρ̂a],

with Ĥa = Ĥ(ζa) and ⟨ρ̂a|Ĥa⟩= Tr(ρ̂aĤa).

These are computational particles, not physical particles!



Strategy for a MQC method

Blend Koopman’s classical mechanics with methods in symplectic geometry!

· Based on hybrid density operators

· Basis-independent formulation

· Enjoys variational and Hamiltonian structure (conservation laws, closure)

All these steps require a lot of work! (as shown by C. Tronci)

(Lagrangians, Euler–Poincaré reduction, group actions, gauge connections. . . )



Equations of motion for the new MQC model

The resulting equations of the non-linear hybrid PDE read

∂t f +div
(
f X

)
= 0, i h̄

(
∂t +X ·∇

)
P̂ = [Ĥ , P̂]

where X and Ĥ include h̄-corrections (backreaction terms) to the Ehrenfest
quantities, that is:

X = ⟨X
Ĥ
⟩+ h̄

2f

(〈
X
Ĥ
·∇ | Γ̂

〉
−
〈
Γ̂ ·∇ | X

Ĥ

〉)
,

Ĥ = Ĥ+
i h̄

2f

[
2∇P̂ +P̂ ∇f ,X

Ĥ

]
,

where Γ̂ = if [P̂,∇P̂]

→ “ h̄ -correction” to the Ehrenfest model



The new model overcomes consistency issues and goes beyond Ehrenfest dynamics
Nevertheless, the underlying PDE is quite intimidating.

How to solve it numerically?

→ The presence of inverses and gradients in the equations does not allow for a direct
trajectory-based closure (like for Ehrenfest) of the form

f = ∑
a

waδ (z− za), P̂ = ∑
a

waρaδ (z− za).



Regularization and koopmons

The koopmon method exploits a variational regularization in order to restore
point-particle trajectories. The regularized Lagrangian reads

ℓ̄=
∫
T ∗Q

f A ·X + ⟨P̂, i h̄ξ̂ − Ĥ⟩−a f −1︸︷︷︸
→ f̄ −1

⟨P̄, i h̄{ P︸︷︷︸
→ P̄

, Ĥ}
〉dz ,

where f̄ = Kα ∗ f and P̄ = Kα ∗ P̂ for some convolution kernel Kα in phase space.
The resulting regularized equations allow for delta-like expressions of f and P̂ , returning
trajectories called koopmons.

In the limit α → 0, we ask for Kα to tend to the delta distribution (Dirac sequence),
thereby recovering the original Lagrangian. In the limit α → ∞, we obtain Ehrenfest!

Kα smooth kernel function, e.g. normalized Gaussian with variance α > 0



Trajectory equations

q̇a = w−1
a ∂pah, ṗa =−w−1

a ∂qah, i h̄ρ̇a = w−1
a [∂ρah,ρa]

where

h = ∑
a

wa

〈
ρa, Ĥa+ i h̄∑

b

wb[ρb,Iab]
〉
, ∂ρah = Ĥa+ i h̄∑

b

wb[ρb,Iab−Iba],

Iab =
1
2

∫
T ∗Q

Ka{Kb, Ĥ}
∑c wcKc

dz , Ks(z , t) := Kα(z− zs(t))



Implementation

Spatial integration

Executed using the composite trapezoidal rule, employing a time-dependent
phase-space box that dynamically adjusts with the distribution in each time step.

α

∆q = α/jq

jq

nq

left truncation

qmin(t)

Kqmin

q

Analogously for right truncation and corresponding truncation in momentum space



Time integration

· Executed using the fourth-order Runge–Kutta method (RK4).

· Time adaptive embedded RK methods (with Delyan Zhelyazov).

· Symplectic variant also available.



Code Structure (Pseudocode)

Input: Hamiltonian; number of particles; factorized kernel functions (α); initial data

for k = 1,2, . . .

Compute the time evolved parameters q(k),p(k),ρ(k)

Cost → time integrator (RK4): 20N phase-space integrals

Check if total energy is conserved
Cost → N phase-space integrals

Implemented in MATLAB on a laptop machine.



Numerical experiments

Classical sector

Visualization of the time-evolved (Liouville) phase-space density.

Quantum sector

Visualization of decoherence levels, expressed in terms of quantum purity Tr(ρ̂2).

“Reference” solver (there is no true reference)

We compare our results with a fully quantum solution by solving the TDSE using a
split operator Fourier transform (SOFT) method. We then plot the Wigner distribution.



Rabi Hamiltonian in the ultrastrong coupling regime

Ĥ(q,p) =
1
2

(
p2

m
+mω

2q2
)

σ̂0+ γqσ̂z +B0σ̂x

for m = ω = 1, γ = 0.29, B0 = 0.35.

σ̂0 = [1,0;0,1], σ̂x = [0,1;1,0], σ̂z = [1,0;−1,0]
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Ultrastrong coupling

Input: N = 500; ω = 0.5; q0 = 0, p0 = 4; ε0 = [1, 1; 1, 1]/2; tfin = 25; dt = 0.05

Standard values for N and ω; snapshots at t = 0, 10.5, 17.5, 25

Quantum Koopmons Ehrenfest



Input: N = 1000; ω = 0.325; q0 = →8, p0 = 10; ε0 = [1, 0; 0, 0]; tfin = 3000; dt = 2
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Tuned values for N and ω; snapshots at t = 0, 1280, 2130, 3000

Quantum Koopmons Ehrenfest



Input: N = 1000; ω = 0.325; q0 = →15, p0 = 20; ε0 = [0, 0; 0, 1]; tfin = 3500; dt = 2
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Quantum Koopmons Ehrenfest

Tuned values for N and ω; snapshots at t = 0, 1500, 2000, 3500
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Work in progress (momentum coupling)

Rashba Hamiltonians (1D models for nanowires)

In the following, let m,ω > 0, αR > 0 (Rashba coupling), B0 ∈ R (magnetic field)

Ĥ(q,p) =
1
2

(
p2

m
+mω

2q2
)

σ̂0+αRpσ̂y +B0σ̂x

The physical parameters m and αR are material dependent.

→ Good test cases available without HO potential



Classification

In the following, we work with h̄ = 1. The spin-orbit energy is defined as

ESOC :=
mα2

R

2
.

Let R := 2ESOC/|B|. The coupling regime is called

Zeeman dominated if R < 1, and Rashba dominated for R > 1.



Input: N = 500; ω = 0.5; q0 = 0, p0 = 0; ε0 = [0, 0; 0, 1]; tfin = 46ps; dt = tfin/100

Model: No HO; InAs; m = 0.023; ωR = 0.0396; B0 = 140mT; Rashba dominated (R → 16)

Standard values for N and ω; InAs accounts for large coupling



Input: N = 500; ω = 0.5; q0 = 0, p0 = 0; ε0 = [0, 0; 0, 1]; tfin = 234 ps; dt = tfin/100

Standard values for N and ω; InSb accounts for small coupling

Model: No HO; InSb; m = 0.014; ωR = 0.0021; B0 = 140mT; Zeeman dominated (R → 0.008)



Input: N = 500; ω = 0.5; q0 = 0, p0 = 1e → 4; ε0 = [0, 0; 0, 1]; tfin = 237 ns; dt = tfin/100

Model: HO; ω = 44MHz; GaAs; m = 0.067; εR = 4.7159e → 05; B0 = 4.2 mT; Zeeman dominated (R ↑ 0.08)

Standard values for N and ω; GaAs accounts for small coupling, frequency yet to small



Final remarks

· New trajectory-based Hamiltonian approach for simulating MQC dynamics

· The koopmon method provides a ground for developing closure methods
through the underlying variational structure

· Numerical tests for many different models (currently: Rashba Hamiltonians)

· The koopmon method can be extended to higher dimensions
→ Please do ask me about this!

Thank you.



Backup Slides



Koopmons in higher dimensions

The koopmon method can be extended to higher dimensions by using only sums of
products of integrals in 2d .

Consider two degrees of freedom z1 = (q1,p1) and z2 = (q2,p2). For a given multi-index
κ ∈ {(a,b) : a,b = 1, . . . ,N} we assume the singular solution ansatz in two dimensions

P̂(z1,z2, t) = ∑
κ

wκ ρ̂κ(t)δ (z1−ζ
(κ)
1 (t))δ (z2−ζ

(κ)
2 (t)).

In addition, we restrict this ansatz to consider the case wκ = w(a,b) = wawb, along with

ζ
(a,b)
1 = ζ

(a,b′)
1 ∀a,b,b′ and ζ

(a,b)
2 = ζ

(a′,b)
2 ∀b,a,a′.



Furthermore, we pick a kernel such that K (z− z ′) = K1(z1− z ′1)K2(z2− z ′2), so that

P̄(z1,z2, t) = ∑
a,b

wawbρ̂ab(t)K1(z1−ζ
(a)
1 (t))K2(z2−ζ

b
2 (t))

=: ∑
a,b

wawbρ̂ab(t)K
(a)
1 (z1, t)K

(b)
2 (z2, t),

as well as f̄ = ∑a,bwawbK
(a)
1 K

(b)
2 =

(
∑awaK

(a)
1

)(
∑bwbK

(b)
2

)
.



Based on the following class of Hamiltonians,

Ĥ(z1,z2) = Hc(z1,z2)1+ ĤQ +h2(z2)Ĥ1(z1)+h1(z1)Ĥ2(z2),

the backreaction integrals

Îaba′b′ :=
∫∫ (

K
(a)
1 K

(b)
2 K

(b′)
2 {K (a′)

1 , Ĥ}1

∑c,d wcwdK
(c)
1 K

(d)
2

+
K

(a)
1 K

(b)
2 K

(a′)
1 {K (b′)

2 , Ĥ}2

∑c,d wcwdK
(c)
1 K

(d)
2

)
d2z1d2z2

can be decomposed into a sum of products of integrals, each of dimension 2.



Îaba′b′ = Î
(aa′)
1 J

(bb′)
2 + I

(aa′)
1 Ĵ

(bb′)
2 + I

(bb′)
2 Ĵ

(aa′)
1 + Î

(bb′)
2 J

(aa′)
1 ,

along with the definitions

I
(ss ′)
ℓ :=

∫
K

(s)
ℓ {K (s ′)

ℓ ,hℓ}ℓ
∑c wcK

(c)
ℓ

d2zℓ, J
(ss ′)
ℓ :=

∫
K

(s)
ℓ K

(s ′)
ℓ hℓ

∑d wdK
(d)
ℓ

d2zℓ,

Î
(ss ′)
ℓ :=

∫
K

(s)
ℓ {K (s ′)

ℓ , Ĥℓ}ℓ
∑c wcK

(c)
ℓ

d2zℓ, Ĵ
(ss ′)
ℓ :=

∫
K

(s)
ℓ K

(s ′)
ℓ Ĥℓ

∑d wdK
(d)
ℓ

d2zℓ,

for ℓ= 1,2 and s = a,b.



Quantum Koopmons EhrenfestInput: N = 500; ω = 0.5; q0 = 0, p0 = 0; ε0 = [1, 1; 1, 1]/2; tfin = 15; dt = 0.05

Standard values for N and ω; snapshots at t = 0, 4, 6, 8, 15
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